The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hiroshi HARA(120hit)

61-80hit(120hit)

  • Reducing Detection Complexity of MIMO-OFDM by Using New Nulling Vectors

    Ming LEI  Hiroshi HARADA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:2
      Page(s):
    392-396

    We propose new nulling vectors for the subcarrier grouping based low-complexity detection scheme of V-BLAST (vertical Bell Laboratories layered space-time) coded MIMO-OFDM. In each subcarrier group, the center subcarrier uses the conventional ZF-DFE (zero-forcing decision-feedback- equalization) algorithm and the non-center subcarriers use the reduced-complexity ZF-DFE with the new nulling vectors. The subcarrier grouping based detection scheme, ZF-DFE-SG, can significantly reduce the detection complexity compared with ZF-DFE-EX which exhaustively applies the conventional ZF-DFE at each subcarrier independently. The performance loss is very small. We conduct the simulations for channel coded V-BLAST OFDM system under estimated channel frequency responses. It is shown the complexity can be reduced by 80.6% with only 1.0 dB performance loss for a 44 system.

  • Error Analysis of Hybrid DS-Multiband-UWB Multiple Access System in the Presence of Narrowband Interference

    Chin-Sean SUM  Mohammad Azizur RAHMAN  Shigenobu SASAKI  Hiroshi HARADA  Shuzo KATO  

     
    PAPER-Ultra Wideband System

      Vol:
    E92-A No:9
      Page(s):
    2167-2176

    This paper proposes a hybrid multiband (MB) ultra wideband (UWB) system with direct sequence (DS) spreading. The theoretical error analysis for the DS-MB-UWB multiple access system with Rake receiver in the presence of multipath and narrowband interference is developed. The developed theoretical framework models the multiple access interference (MAI), multipath interference (MI) and narrowband interference for the designed UWB system. It is shown that the system error performance corresponding to the combining effects of these interference can be accurately modeled and calculated. Monte Carlo simulation results are provided to validate the accuracy of the model. Additionally, it is found that narrowband interference can be mitigated effectively in the multiband UWB system by suppressing the particular UWB sub-band co-existing with the interfering narrowband signal. A typical improvement of 5 dB can be achieved with 75% sub-band power suppression. On the other hand, suppression of UWB sub-band is also found to decrease frequency diversity, thus facilitating the increase of MAI. In this paper, the developed model is utilized to determine the parameters that optimize the UWB system performance by minimizing the effective interference.

  • Differential Modulated Pilot Symbol Assisted Adaptive OFDM for Reducing the MLI with Predicted FBI

    Chang-Jun AHN  Satoshi TAKAHASHI  Hiroshi HARADA  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    436-442

    In an AMS/OFDM system, base station is in control of the modulation level of each subcarriers, and then, adaptive modulated packet is transmitted from the base station to the mobile station. In this case, the mobile station is required the modulation level information (MLI) to demodulate the received packet. The MLI is generally transmitted as a data symbol, therefore, the throughput is degraded. Moreover, it is necessary to have some transmission delay times and the processing time to make an adaptive modulation command (AMC) using feedback information (FBI). With the FBI delay and processing time, the system performance might be degraded. To reduce these problems, in this paper, we propose a differential modulated pilot symbol assisted adaptive OFDM for reducing the MLI with predicted FBI.

  • Automatic Color Segmentation Method Using a Neural Network Model for Stained Images

    Hironori OKII  Noriaki KANEKI  Hiroshi HARA  Koichi ONO  

     
    PAPER-Bio-Cybernetics

      Vol:
    E77-D No:3
      Page(s):
    343-350

    This paper describes a color segmentation method which is essential for automatic diagnosis of stained images. This method is applicable to the variance of input images using a three-layered neural network model. In this network, a back-propagation algorithm was used for learning, and the training data sets of RGB values were selected between the dark and bright images of normal mammary glands. Features of both normal mammary glands and breast cancer tissues stained with hematoxylin-eosin (HE) staining were segmented into three colors. Segmented results indicate that this network model can successfully extract features at various brightness levels and magnifications as long as HE staining is used. Thus, this color segmentation method can accommodate change in brightness levels as well as hue values of input images. Moreover, this method is effective to the variance of scaling and rotation of extracting targets.

  • MIMO-OFDM Based Evolution Schemes for DPC-OF/TDMA

    Ming LEI  Hiroshi HARADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:2
      Page(s):
    239-250

    During these years we have been focusing on developing ultra high-data-rate wireless access systems. One of such kind of systems is called DPC-OF/TDMA [2]-[4] (dynamic parameter controlled orthogonal frequency and time division multiple access) which targets at data rates beyond 100 Mbps. In order to support higher data rates, e.g., several hundreds of mega bps or even giga bps, it is necessary to evolve DPC-OF/TDMA on MIMO-OFDM (multiple-input multiple-output orthogonal frequency division multiplexing) platform. In this paper, we propose two MIMO-OFDM evolution schemes for DPC-OF/TDMA: M1 scheme and M2 scheme. M1 scheme is based on the combination of V-BLAST (vertical Bell laboratories layered space-time architecture) and OFDM. It invests all transmit antennas on multiplexing while exploits no diversity in the transmitter. M2 scheme is based on multi-layer space-time block coded OFDM (multi-layer STBC OFDM). This scheme achieves a good compromise between multiplexing and diversity in the transmitter. We conduct exhaustive simulations for 44, 46, 48, 66, 68, and 88 systems. We are assured that both evolution schemes are very promising in supporting several hundreds of mega bps data rates. Moreover, we find that each evolution scheme has its own prevailing area. When the receive diversity order is limited, M2 scheme has better performance since it embeds transmit diversity; as the receive diversity order increases, the performance gap between the two schemes shrinks and finally M1 scheme prevails in performance. Therefore, the proper choice depends on the system configuration, i.e., how many transmit and receive antennas are used.

  • Interactive Evolutionary System for Synthesizing Facial Caricature with Non-planar Expression

    Tatsuya UGAI  Keita SATO  Kaoru ARAKAWA  Hiroshi HARASHIMA  

     
    PAPER

      Vol:
    E97-A No:11
      Page(s):
    2154-2160

    A method to synthesize facial caricatures with non-planar expression is proposed. Several methods have been already proposed to synthesize facial caricatures automatically, but they mainly synthesize plane facial caricatures which look somewhat monotonous. In order to generate expressive facial caricature, the image should be expressed in non-planar style, expressing the depth of the face by shading and highlighting. In this paper, a new method to express such non-planar effect in facial caricatures is proposed by blending the grayscale information of the real face image into the plane caricature. Some methods also have been proposed to generate non-planar facial caricature, but the proposed method can adjust the degree of non-planar expression by interactive evolutionary computing, so that the obtained expression is satisfied by the user based on his/her subjective criteria. Since the color of the face looks changed, when the grayscale information of the natural face image is mixed, the color information of the skin area are also set by interactive evolutionary computing. Experimental results show the high performance of the proposed method.

  • Feasibility Study on Over-the-Air Software Download for Software-Radio-Based Intelligent Transport Systems

    Hiroshi HARADA  Masayuki FUJISE  

     
    PAPER

      Vol:
    E86-B No:12
      Page(s):
    3425-3432

    We have proposed two types of software download methods for software radio (SR) based intelligent transport systems (ITS): (1) broadcasting-type software download method and (2) communication-type software download method. In this paper, we study their feasibility of their employment in a newly developed prototype. We give tangible examples of method (1) using the vehicle information and communication system (VICS) and method (2) using the dedicated short range communication (DSRC) system. We describe the download formats and procedures for both methods and use the experimental prototype to evaluate the basic software download time and configuration time. Moreover we also propose architecture of SR-based multimode terminal that can reduce download time and utilize over-the-air software download services by VICS and DSRC links.

  • MAC Development and Enhancement of IEEE 802.15.3c WPAN Realizing Gbps Throughput

    Chang-Woo PYO  Zhou LAN  Fumihide KOJIMA  Ryuhei FUNADA  Hiroshi HARADA  Shuzo KATO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:11
      Page(s):
    3065-3076

    IEEE 802.15.3c has been standardized for wireless personal area networks (WPANs) to realize high-speed wireless communications with 1 Gbps throughput. In this paper we introduce a 802.15.3c WPAN prototype. The introduced 802.15.3c WPAN prototype applies the enhanced MAC functions of data separation on hybrid multiple access, long frame size, aggregation, block acknowledgment, and timing operation, which can realize Gbps throughput in IEEE 802.15.3c. Moreover, the experiment performance studies on the prototype show that around 1.6 Gbps throughput can be successfully achieved and video streaming applications can be accommodated. Also, our studies provide the useful information of MAC capacity for developing the 802.15.3c devices.

  • Inter-Vehicle Communication Network with an Autonomous Relay Access Scheme

    Fumihide KOJIMA  Hiroshi HARADA  Masayuki FUJISE  

     
    PAPER

      Vol:
    E84-B No:3
      Page(s):
    566-575

    This paper proposes an autonomous relay access algorithm that provides an intelligent wireless network structure for inter-vehicle communication systems. The proposed algorithm introduces a special classification among mobile terminals and assigns terminals to one of several terminal groups, which are adaptively and autonomously constructed according to traffic conditions. The proposed algorithm uses the terminal groups to conduct relay access transmission among terminals, and achieves a high rate of successful inter-terminal transmission. Computer simulation confirms that the proposed algorithm can achieve a lower blocking probability than that without a relay access scheme.

  • Performance Improvement of Decision-Directed OFDM Channel Estimation in a Fast Fading Environment

    Ryuhei FUNADA  Hiroshi HARADA  Shoji SHINODA  

     
    PAPER-Signal Processing for Communications

      Vol:
    E87-A No:8
      Page(s):
    1994-2001

    Decision-directed, pilot-symbol-aided channel estimation (PSACE) for coded orthogonal frequency division multiplexing (COFDM) systems has structurally unavoidable processing delay owing to the generation of new reference data. In a fast fading environment, the channel condition which varies during the delay induces channel estimation error. This paper proposes a method of reducing this estimation error. In this method, channel equalization is performed for the received signal twice. One is done as pre-equalization with the delayed estimates of channel frequency response in order to update them periodically. At the same moment, the other is done as post-equalization for the received signal that is delayed by the processing delay time, with the same estimates as the pre-equalization. By the proposed method, more accurate channel estimation can be realized without significant output delay. Computer simulations are performed by utilizing the IEEE 802.11a packet structure of 24 Mbit/s. The result shows that the proposed OFDM transmission scheme having the delay time of 20 µs offers 2.5 dB improvement in the required Eb/N0 at PER = 10-2 in the ESTI-BRAN model C Rayleigh fading channel with fd = 500 Hz.

  • Adaptive Modulated OFDM Radio Transmission Scheme Using a New Channel Estimation Method for Future Broadband Mobile Communication Systems

    Hiroshi HARADA  Takako YAMAMURA  Yukiyoshi KAMIO  Masayuki FUJISE  

     
    PAPER-Wireless Communication Technology

      Vol:
    E85-B No:12
      Page(s):
    2785-2796

    An adaptive modulated orthogonal frequency division multiplexing (OFDM) radio transmission scheme that enables efficient data transmission in multipath fading environments is newly proposed. This scheme can be used in standardized multimedia mobile access systems such as ETSI-BRAN, and ARIB-MMAC. It is based on estimating the delay spread and the carrier-to-noise power density ratio (C/N0). The estimation is done using channel estimation symbols that are inserted into the frames of the standard OFDM radio transmission scheme. Computer simulations show that the estimation method results in an average BER close to those when propagation characteristics are perfectly estimated. Furthermore, when the adaptive OFDM transmission scheme is based on BPSK, QPSK or 16 QAM, the average BER is almost close to that when BPSK-OFDM is only used, and the average transmission rate is 1.8 times as high. Using an error-correction code based on convolutional code results in an average BER lower than that with the BPSK- and QPSK-OFDM schemes.

  • An Empirical Study of a Coplanar Bandpass Filter with Attenuation Poles Using Short-Ended Half-Wavelength Resonators

    Kouji WADA  Yoshiyuki AIHARA  Osamu HASHIMOTO  Hiroshi HARADA  

     
    PAPER

      Vol:
    E86-A No:2
      Page(s):
    273-279

    Basic characteristics of a short-ended half-wavelength resonator made of a coplanar waveguide (CPW) and their applications to bandpass filters (BPFs) are discussed. The first part of this paper gives the essence for improving out-of-band characteristics of the BPF by describing the basic characteristics of a tap-coupled resonator. Secondly, a new BPF with attenuation poles using the short-ended half-wavelength CPW resonators is proposed and realized. It is confirmed that our methodology is useful for improving out-of-band characteristics of the BPF using the short-ended half-wavelength CPW resonators without complicated filter design.

  • Throughput and Error Analysis of a Space-Time Resource Management Scheme for Multi-Gbps Millimeter-Wave WPAN System

    Chin-Sean SUM  Mohammad Azizur RAHMAN  Zhou LAN  Ryuhei FUNADA  Junyi WANG  Tuncer BAYKAS  Hiroshi HARADA  Shuzo KATO  

     
    PAPER

      Vol:
    E92-A No:11
      Page(s):
    2659-2668

    In this paper, throughput and error performance analysis is conducted on the proposed space-time resource management (STRM) scheme to realize a multi-Gbps millimeter-wave wireless personal area network (WPAN) system. The proposed STRM allows multiple peer-to-peer communication links to occupy the same time-division-multiple-access (TDMA) time slot, in contrary to the conventional TDMA system that allocates only one time slot to one communication link. Theoretical analysis is performed to investigate the achievable system throughput in the presence of co-channel interference (CCI) generated by communication links co-sharing the same time slot. To increase accuracy, the analysis results are validated by Monte Carlo simulations. Firstly, it is found that the upper bound of the achievable throughput increases linearly with the number of communication links sharing the same time slot. However, optimum throughput exists corresponding to the CCI present in the system. Secondly, by manipulating a parameter that controls the allowable CCI in the network, the system throughput can be optimized. Lastly, it is also found that in a millimeter-wave band system, a victim system with transmitter-receiver separation of 1-meter can achieve bit error rate (BER) of 10-6 provided that the interferer is at least 6-meters away.

  • Compression and Representation of 3-D Images

    Takeshi NAEMURA  Masahide KANEKO  Hiroshi HARASHIMA  

     
    INVITED SURVEY PAPER

      Vol:
    E82-D No:3
      Page(s):
    558-567

    This paper surveys the results of various studies on 3-D image coding. Themes are focused on efficient compression and display-independent representation of 3-D images. Most of the works on 3-D image coding have been concentrated on the compression methods tuned for each of the 3-D image formats (stereo pairs, multi-view images, volumetric images, holograms and so on). For the compression of stereo images, several techniques concerned with the concept of disparity compensation have been developed. For the compression of multi-view images, the concepts of disparity compensation and epipolar plane image (EPI) are the efficient ways of exploiting redundancies between multiple views. These techniques, however, heavily depend on the limited camera configurations. In order to consider many other multi-view configurations and other types of 3-D images comprehensively, more general platform for the 3-D image representation is introduced, aiming to outgrow the framework of 3-D "image" communication and to open up a novel field of technology, which should be called the "spatial" communication. Especially, the light ray based method has a wide range of application, including efficient transmission of the physical world, as well as integration of the virtual and physical worlds.

  • Highly Efficient Sensing Methods of Primary Radio Transmission Systems toward Dynamic Spectrum Sharing-Based 5G Systems Open Access

    Atomu SAKAI  Keiichi MIZUTANI  Takeshi MATSUMURA  Hiroshi HARADA  

     
    PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-B No:10
      Page(s):
    1227-1236

    The Dynamic Spectrum Sharing (DSS) system, which uses the frequency band allocated to incumbent systems (i.e., primary users) has attracted attention to expand the available bandwidth of the fifth-generation mobile communication (5G) systems in the sub-6GHz band. In Japan, a DSS system in the 2.3GHz band, in which the ARIB STD-B57-based Field Pickup Unit (FPU) is assigned as an incumbent system, has been studied for the secondary use of 5G systems. In this case, the incumbent FPU is a mobile system, and thus, the DSS system needs to use not only a spectrum sharing database but also radio sensors to detect primary signals with high accuracy, protect the primary system from interference, and achieve more secure spectrum sharing. This paper proposes highly efficient sensing methods for detecting the ARIB STD-B57-based FPU signals in the 2.3GHz band. The proposed methods can be applied to two types of the FPU signal; those that apply the Continuous Pilot (CP) mode pilot and the Scattered Pilot (SP) mode pilot. Moreover, we apply a sample addition method and a symbol addition method for improving the detection performance. Even in the 3GPP EVA channel environment, the proposed method can, with a probability of more than 99%, detect the FPU signal with an SNR of -10dB. In addition, we propose a quantized reference signal for reducing the implementation complexity of the complex cross-correlation circuit. The proposed reference signal can reduce the number of quantization bits of the reference signal to 2 bits for in-phase and 3 bits for orthogonal components.

  • Reverse Link Performance Improvement for Wideband OFDM Using Alamouti Coded Heterogeneous Polarization Antennas

    Chang-Jun AHN  Yukiyoshi KAMIO  Satoshi TAKAHASHI  Hiroshi HARADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E87-B No:11
      Page(s):
    3281-3288

    The combination of OFDM and multiple antennas in either the transmitter or receiver is attractive to increase a diversity gain. However, multiple antennas system requires an antenna separation of 5-10 λ to keep the correlation coefficient below 0.7 for the space diversity, so this may be difficult to implement in a mobile station with high mobility. Recently, the polarization transmit diversity is considered in a mobile station. However, polarization transmit diversity requires twice transmit powers to compare with the conventional transmit diversity, since only vertically polar antenna cannot receive the horizontal signal components. In this paper, we express the cross correlation of each polarization antenna and the cross polarization discrimination (XPD) of multiple polarization antennas with simple model, and we propose an wideband OFDM using Alamouti coded heterogeneous polarization antennas for reducing the previous problem. From the simulated results, the proposed system shows better BER performance than that of the conventional STBC/OFDM.

  • Comprehensive Performance Evaluation of Universal Time-Domain Windowed OFDM-Based LTE Downlink System Open Access

    Keiichi MIZUTANI  Takeshi MATSUMURA  Hiroshi HARADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/02/22
      Vol:
    E102-B No:8
      Page(s):
    1728-1740

    A variety of all-new systems such as a massive machine type communication (mMTC) system will be supported in 5G and beyond. Although each mMTC device occupies quite narrow bandwidth, the massive number of devices expected will generate a vast array of traffic and consume enormous spectrum resources. Therefore, it is necessary to proactively gather up and exploit fractional spectrum resources including guard bands that are secured but unused by the existing Long Term Evolution (LTE) systems. The guard band is originally secured as a margin for high out-of-band emission (OOBE) caused by the discontinuity between successive symbols in the cyclic prefix-based orthogonal frequency division multiplexing (CP-OFDM), and new-waveforms enabling high OOBE suppression have been widely researched to efficiently allocate narrowband communication to the frequency gap. Time-domain windowing is a well-known signal processing technique for reducing OOBE with low complexity and a universal time-domain windowed OFDM (UTW-OFDM) with a long transition duration exceeding the CP length has demonstrated its ability in WLAN-based systems. In this paper, we apply UTW-OFDM to the LTE downlink system and comprehensively evaluate its performance under the channel models defined by 3GPP. Specifically, we evaluate OOBE reduction and block error rate (BLER) by computer simulation and clarify how far OOBE can be reduced without degrading communication quality. Furthermore, we estimate the implementation complexity of the proposed UTW-OFDM, the conventional CP-OFDM, and the universal filtered-OFDM (UF-OFDM) by calculating the number of required multiplications. These evaluation and estimation results demonstrate that the proposed UTW-OFDM is a practical new-waveform applicable to the 5G and beyond.

  • Stochastic Method of Determining Substream Modulation Levels for MIMO Eigenbeam Space Division Multiplexing

    Satoshi TAKAHASHI  Chang-Jun AHN  Hiroshi HARADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:1
      Page(s):
    142-149

    Multiple-input multiple-output (MIMO) eigenbeam space division multiplexing that uses adaptive modulations for substreams is a promising technology for improving transmission capacity. A fundamental drawback of this approach is that the modulation levels determined from the carrier-to-noise ratio at each substream are sometimes overly optimistic so the use of these modulation levels results in transmission errors and diminished transmission performance. A novel method of determining substream modulation levels is proposed that alleviates this degradation. In the proposed method, the expected bit error rates for possible modulations of each substream are calculated from delay profiles. Simulation results indicate that transmission capacity is improved by 30% using the new method compared with the conventional method.

  • SMI Adaptive Beamforming Based on Frequency-to-Time Pilot Transform for OFDM System

    Ming LEI  Hiroshi HARADA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:8
      Page(s):
    2261-2265

    We propose an adaptive beamforming scheme for the combination of orthogonal frequency division multiplexing (OFDM) and adaptive antenna array. The combinational scheme is characterized by the sample matrix inverse (SMI) algorithm, frequency-to-time pilot transform and pre-FFT combination. For every OFDM block containing both data and pilot symbols, we transform the frequency-domain pilot symbols to the corresponding time-domain components. One of the obvious advantages of this transform is that the time interval of the antenna weight vector update can be reduced to only one OFDM sample interval, from one OFDM block interval of the conventional beamforming scheme in which the transform is not applied. This feature can greatly accelerate the convergence of SMI beamforming. The simulation results verify that the proposed beamforming scheme is capable of improving the convergence behavior significantly.

  • Interactive Model-Based Coding of Facial Image Sequence with a New Motion Detection Algorithm

    Kazuo OHZEKI  Takahiro SAITO  Masahide KANEKO  Hiroshi HARASHIMA  

     
    PAPER

      Vol:
    E79-B No:10
      Page(s):
    1474-1483

    To make the model-based coding a practical method, new signal processing techniques other than fully-automatic image recognition should be studied. Also after having realized the model-based coding, another new signal processing technique to improve the performance of the model-based coding should be studied. Moreover non-coding functions related to the model-based coding can be embedded as additional features. The authors are studying the interactive model-based coding in order to achieve its practical realization, improve its performance and extend related non-coding functions. We have already proposed the basic concept of interactive model-based coding and presented an eyeglasses processing for a facial image with glasses to remove the frame for improving the model-based coding performance. In this paper, we focus on the 3-D motion detection algorithm in the interactive model-based coding. Previous works were mainly based on iterative methods to solve non-linear equations. A new motion detection algorithm is developed for interactive model-based coding. It is linear because the interactive operation generates more information and the environment of the applications limits the range of parameters. The depth parameter is first obtained by the fact that a line segment is invariant as to 3-D space transformation. Relation of distance between two points is utilized. The number of conditions is larger than that of the unknown variables, which allows to use least square method for obtaining stable solutions in the environment of the applications. Experiments are carried out using the proposed motion detection method and input noise problems are removed. Synthesized wireframe modified by eight parameters provides smooth and natural motion.

61-80hit(120hit)